Improving Graph Neural Network Models in Link Prediction Task via A Policy-Based Training Method
نویسندگان
چکیده
Graph neural network (GNN), as a widely used deep learning model in processing graph-structured data, has attracted numerous studies to apply it the link prediction task. In these studies, observed edges are utilized positive samples, and unobserved randomly sampled negative ones. However, there problems sampling samples. First, some missing that existing network. Second, can be easily distinguished from edges, which cannot contribute sufficiently Therefore, using directly samples is difficult make GNN models achieve satisfactory performance To address this issue, we propose policy-based training method (PbTRM) improve quality of proposed PbTRM, sample selector generates state vectors determines whether select them We perform experiments with three on two standard datasets. The results show PbTRM enhance
منابع مشابه
A conjugate gradient based method for Decision Neural Network training
Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...
متن کاملLink Prediction Based on Graph Neural Networks
Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks’ matrix representations to learn an embe...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملImproving Neural Network Classification Training
IMPROVING NEURAL NETWORK CLASSIFICATION TRAINING Michael E. Rimer Department of Computer Science Doctor of Philosophy The following work presents a new set of general methods for improving neural network accuracy on classification tasks, grouped under the label of classification-based methods. The central theme of these approaches is to provide problem representations and error functions that m...
متن کاملA Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2022
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app13010297